PART. III - REARRANGEMENTS D'EPOXYDES-7,8 DITERPENIQUES CATALYSES PAR L'ETHERATE DE TRIFLUORURE DE BORE

M. TARAN^a, B. DELMOND^{*}

LABORATOIRE DE CHIMIE ORGANIQUE ET ORGANOMETALLIQUE, INSTITUT DU PIN

Université de Bordeaux I, 351, Cours de la Libération - 33405 - TALENCE CEDEX (France)

(Received in France 17 June 1986)

Abstract : The action of borontrifluoride etherate on methyl isopimarate 7,8 epoxides has been studied. Backbone rearrangements and the obtention of compounds with new diterpenic skeleton are reported.

Lors de travaux antérieurs^{1,2} sur les isomérisations d'époxydes diterpéniques catalysées par l'éthérate de trifluorure de bore, nous avons mis en évidence des réarrangements du squelette diterpénique. Cette réaction a été étendue à des époxydes-7,8 et nous décrirons dans cette publication l'isomérisation des époxy-7,8 isopimarate de méthyle par l'éthérate de trifluorure de bore³.

RESULTATS

L'époxy-7,8 β isopimarate de méthyle 1 en solution dans du benzène anhydre, traité par l'éthérate de trifluorure de bore à température ordinaire, conduit après chromatographie sur colonne d'alumine au triène 3 (5%) isolé et décrit précédemment¹, à la cétone 4 (77%) et aux hydroxy-oléfines 5 (1%) et 6 (4%).

^a UER des Sciences Pharmaceutiques, Université de Bordeaux II

La structure de la cétone $\underline{4}$ a pu être déterminée au moyen de ses caractéristiques physicochimiques. L'incorporation maximum de trois atomes de deutérium révélée par le spectre de masse après deutériation catalysée par une base, indique la présence d'un groupe méthylène (-CH₂) et d'un groupe (-CH) en α du carbonyle. Au moyen de la RMN¹³C, nous avons pu localiser le groupe carbonyle sur le carbone C-7 d'après les effets connus^{4,5} pour une telle fonction. Nous observons, en effet, un déblindage important (+16,7 et +13,6 ppm respectivement) sur les déplacements chimiques des carbones C-6 et C-8 (effet β). Cette cétone n'est pas affectée par un traitement basique (KOH/MeOH), ce qui suppose une configuration β pour l'hydrogène H-8 (jonction B/C trans).

La fraction la plus polaire du mélange réactionnel est constituée par les hydroxy-oléfines 5 et 6.

La bande d'absorption en IR à 3570 cm⁻¹ (v_{OH}) et le signal d'un proton à δ 3,84 ppm dans le spectre de RMN¹H sont en accord avec la présence d'une fonction alcool dans le composé 5. Le spectre de RMN¹³C confirme la nature secondaire de l'alcool (doublet en "off-resonance" à δ 70,8 ppm) et permet également de mettre en évidence une double liaison tétrasubstituée que nous situons en -5(10) sur la base du déplacement chimique mesuré pour le signal du groupe CH₃-19 (δ = 23,1 ppm)⁶. La configuration du groupe hydroxyle est déterminée par comparaison des déplacements chimiques des atomes de carbone du composé 13 et de l'hydroxy-oléfine 5. On note, en particulier sur le signal correspondant au méthyle angulaire CH₃-20 un déblindage ($\Delta \delta$ = +2,5 ppm) par rapport à celui observé dans 13 (schéma 1). Un tel effet s'explique par une interaction δ syn-diaxiale^{7,8} OH/CH₃-20 dans 5, ce qui implique une configuration β pour le groupe hydroxyle en C-7.

 $\Lambda \delta = +2.5 \text{ ppm}$

Schéma 1

Dans le spectre de RMN¹H du composé **6** on observe un signal multiplet à δ 3,78 ppm (W 1/2 = 6 Hz) attribuable à la résonance d'un proton situé au pied d'un groupe hydroxyle et un signal triplet dédoublé centré à δ 5,42 ppm (W 1/2 = 11 Hz) correspondant à un proton éthylénique. Le spectre de RMN¹³C confirme la présence d'une double liaison trisubstituée et permet de la localiser en -9(11). En effet sur le spectre réalisé selon la technique de découplage "off-resonance" à faible puissance, les carbones quaternaires C-10 et C-13 conservent leur multiplicité due aux couplages ³J avec les protons éthyléniques. D'autre part, l'acétylation de la fonction alcool (composé \mathbf{Z}) n'apporte que des faibles perturbations (\sim 1 ppm) sur les déplacements chimiques des carbones sp², ce qui est conforme à une structure d'alcool homoallylique ⁹; nous situons donc le groupe hydroxyle en C-7.

со,сн 13

L'époxy-7,8 β isopimarate de méthyle 1 en solution dans le toluène anhydre traité par l'éthérate de trifluorure de bore à basse température (-50°C) conduit après extraction et purification sur colonne d'alumine à la cétone 4 (86%). Cependant nous avons pu constater que le produit cétonique présent avant purification sur alumine est différent de la cétone 4 obtenue après passage sur colonne. Nous avons pu l'identifier à la cétone 8 épimère de 4 par le carbone C-8 sur la base de ses principales caractéristiques physico-chimiques. Nous avons vérifié également que la cétone 8 (jonction B/C cis) s'isomérise très rapidement, en particulier sur alumine, pour donner l'isomère 4, plus stable thermodynamiquement.

L'époxy-7,8 α isopimarate de méthyle 2 en solution dans du benzène anhydre traité par l'éthérate de trifluorure de bore à température ordinaire conduit à un mélange que nous avons analysé par chromatographie sur colonne d'alumine.

Le premier composé isolé est le triène 3 (24%) obtenu précédemment. La deuxième fraction est constituée par l'éther-oxyde 9 (7%). Les principales caractéristiques de son spectre de RMN¹H sont d'une part l'absence de signaux dus au groupement vinylique (-CH=CH₂) et d'autre part un singulet élargi à 6 3,53 ppm (1H). Un tel signal peut être dû à la résonance d'un proton situé en α d'un oxygène hétérocyclique. Le spectre de RMN¹³C précise que l'oxygène est lié d'une part à un carbone tétrasubstitué (δ =80,3 ppm) et d'autre part à un carbone trisubstitué (δ = 85,9 ppm). Compte tenu du nombre de signaux observés et de la multiplicité qui leur correspond nous pouvons conclure que la molécule compte six insaturations¹⁰, ce qui permet d'envisager une structure pentacyclique pour ce composé (5 cycles + -CO₂CH₂).

Une analyse radiocristallographique¹¹ réalisée sur ce composé nous a permis de lui attribuer la structure **9** (schéma 2).

La troisième fraction est constituée de la cétone 矣 (37%) obtenue et décrite précédemment.

L'hydroxy-oléfine **10** (23%) compose la fraction la plus polaire. Le spectre de RMN¹³C établit la nature secondaire de l'alcool (doublet à $\delta = 67,6$ ppm en "off resonance") et met également en évidence une double liaison tétrasubstituée que nous localisons entre C-5 et C-10 (δ CH₃-19 = 23,1 ppm).

La comparaison des spectres de RMN¹³C des composés 10 et 13 nous permet de positionner le groupe hydroxyle en C-7. Nous observons, en effet, pour le composé 10 un déplacement à champ faible important pour les signaux des carbones C-6 et C-8, dû à un effet B provoqué par le groupe hydroxyle.

L'hydroxy-oléfine 10 est épimère de 5 précédemment obtenue, la configuration α pour le groupe hydroxyle en C-7 a pu être confirmée par les effets produits par cette fonction sur les déplacements chimiques des carbones voisins⁷.

L'isomérisation de l'époxy-7,8 α isopimarate 2 par l'éthérate de trifluorure de bore à basse température (-50°C) conduit après séparation sur colonne d'alumine au triène 3 (4%) à l'éther-oxyde 9 (7%), à la cétone 4 (29%) ainsi qu'à une fraction constituée par les hydroxy-oléfines 10 (19%) et 11 (10%). L'hydroxy-oléfine 11 a été obtenue¹ précédemment par isomérisation acide de l'époxyde 2.

Cependant au cours de cette réaction nous avons pu isoler également l'aldéhyde 12 (16%). Dans le spectre de RMN¹H de ce composé on observe un singulet à δ 9,33 ppm. Le spectre de RMN¹³C réalisé selon la technique de découplage "off resonance", met en évidence un doublet centré à δ 204,1 ppm et permet d'observer sur le carbone quaternaire C-8 un effet à champ faible important et un dédoublement caractéristique d'un couplage à longue distance avec le proton aldéhydique.

Nous avons pu vérifier d'autre part que l'aldéhyde 12 traitée par l'éthérate de trifluorure de bore à température ordinaire se transforme quantitativement en éther-oxyde 9.

DISCUSSION

L'action de l'éthérate de trifluorure de bore sur les époxydes isomères dérivés de l'isopimarate de méthyle nous a conduits à des mélanges comprenant des dérivés carbonylés et des hydroxy-oléfines. Nous avons mis en évidence dans quelques cas un triène (produit de deshydratation des hydroxy-oléfines) et un éther-oxyde provenant d'une réaction ultérieure sur l'aldéhyde initialement formée.

Le premier stade de la réaction de l'éthérate de trifluorure de bore sur ces époxydes¹² est la complexation de l'oxygène époxydique par le trifluorure de bore pour conduire à la création d'un centre carboné déficient en électrons en C-8.

A partir du complexe époxyde : BF_3 **12** (schéma 3) on peut envisager selon un mécanisme concerté, l'ouverture de la liaison époxydique C_8 -O, synchrone avec la migration de l'ion hydrure H-7 (voie 1). La cétone **8** ainsi obtenue évoluant au cours de sa purification ultérieure. Cette cétone peut également être issue d'un mécanisme faisant intervenir un carbocation en C-8. L'ouverture de la forme complexée **18** conduit à un intermédiaire dont la conformation

initiale (I) met en évidence des interactions stériques entre le groupe $-OBF_3^-$ et CH_3^-20 . Aussi un changement conformationnel intervient pour conduire à un carbocation moins contraint (II), dans lequel seule la liaison $C_7^-H\alpha$ est convenablement disposée pour migrer. Ceci peut permettre de justifier l'absence de produit avec régression du cycle (B) - migration de $C_6^-C_7^-$ observée avec cet époxyde.

Une autre possibilité d'évolution du complexe 12 est la formation de l'hydroxy-oléfine 5résultant d'une transposition spinale¹³⁻¹⁵ avec migration concertée de H-9a, CH₃-2OB, et H-5a et inversion des centres d'asymétrie en C-8 et C-9 (voie 2). Cependant on peut également envisager la formation de 5 selon un mécanisme pseudo-concerté (voie 3) avec migrations successives de H-9a puis CH₃-2OB à partir du carbocation en C-8. En effet nous mettons en évidence l'hydroxyoléfine 5 résultant d'une élimination-1,2 à partir du carbocation en C-9.

Le réarrangement de l'époxy-7,8 a **2** passe également par un intermédiaire carbocationique en C-8. Les deux liaisons C_6-C_7 et C_7 -H β occupent des positions sensiblement équivalentes visà-vis de l'axe de l'orbitale p vacante du carbone sp² (schéma 4). Une légère rotation peut amener l'une ou l'autre parallèle à l'axe de cette orbitale, donc favorablement disposée pour migrer vers C-8. On obtient alors la cétone **4** par migration de H-7 β et l'aldéhyde **12** par migration de C₆-C₇ avec régression du cycle (B). La stéréochimie (α) du groupe formyle se déduit du mécanisme de cette réaction.

Schéma 4

L'hydroxy oléfine 10 est obtenue par une transposition spinale selon un mécanisme faisant intervenir nécessairement un carbocation en C-8 (schéma 5). En effet l'ouverture du cycle époxydique ne peut être synchrone avec la migration de H-9 : la liaison C_8 -0 est en relation <u>cis</u> par rapport à cet hydrogène

Le réarrangement débute donc par la formation du carbocation en C-8 à partir duquel peut être envisagé un processus avec des intermédiaires carbocationiques.

L'éther-oxyde 9 étant formé quantitativement à partir de l'aldéhyde 12 nous proposons un mécanisme faisant intervenir après complexation du groupe formyle par le trifluorure de bore une réaction intramoléculaire entre les groupes vinyle et formyle (schéma 6). Il se forme ainsi un carbocation en C-15 qui se stabilise par migration de la liaison $C_{13}-C_{14}$. Le carbocation tertiaire en C-13 ainsi formé est alors piégé par attaque de l'atome d'oxygène du groupe alcoxylé pour conduire à l'éther-oxyde 9.

Les réactions d'isomérisation des époxydes-7,8 diterpéniques catalysées par l'éthérate de trifluorure de bore nous ont permis de mettre en évidence des transpositions spinales mettant en relation le squelette isopimarane et le squelette rosane.

PARTIE EXPERIMENTALE

Les points de fusion (F°C) sont déterminés sur un appareil de Kofler et ne sont pas corrigés. Les spectres infrarouge ont été enregistrés au moyen d'un spectrographe Unicam SP 200 soit en film, soit en solution dans le tétrachlorure de carbone. Les spectres de RMN¹H sont enregistrés à 90 MHz en solution dans CDCl₃, avec le TMS comme référence interne sur un appareil Bruker (WH 90). Les spectres de RMN¹³C sont enregistrés à 15.08 MHz en solution dans CDCl₃ sur un appareil Bruker (WP 60). Les attributions des déplacements chimiques des carbones sont réalisées en utilisant les techniques de découplage large bande et "off-resonance". Les spectres UV ont été enregistrés sur un appareil Beckman 25 en solution dans l'éthanol. Les études par spectrométrie de masse ont été réalisées au moyen d'un appareil VG Micromass 16 F.

ISOMERISATION DES EPOXYDES DITERPENIQUES AVEC L'ETHERATE DE TRIFLUORURE DE BORE

Mode opératoire type

L'époxyde diterpénique (1 équivalent) en solution dans du benzène(ou toluène) anhydre à la concentration de 1-2% (p/v) est porté à la température désirée (température ordinaire ou -50°C). On ajoute alors à cette température de l'éthérate de trifluorure de bore (1,3 équivalent) fraîchement distillé.

On agite pendant 15 mn puis on hydrolyse avec 10 ml d'eau. Après extraction de la phase aqueuse à l'éther, les phases organiques sont lavées à l'eau jusqu'à neutralité, puis séchées sur sulfate de magnésium. Après évaporation du solvant, le résidu huileux est purifié par chromatographie sur alumine neutre désactivée (5% H₂O).

ISOMERISATION DE L'EPOXY-7,8 & ISOPIMARATE 1.

La synthèse et les caractéristiques physico-chimiques de l'époxy-7,8 ß isopimarate de méthyle 1 sont décrites dans un travail antérieur.

A température ordinaire

La séparation des constituants du mélange réactionnel obtenu à partir de 7,4 g d'époxy-7,8 β isopimarate de méthyle 1 par chromatographie en phase liquide et élution avec éther de pétroleéther (9/1) donne :

- l'isopimaratriène-7,9 (11), 15 oate de méthyle¹ 3 (295 mg)

- l'isopimarène-15 one-7 oate de méthyle 4 (6g) F = 68° (acétone) ; IR ($v \text{ cm}^{-1}$) : 1700 (C=0), 1720 (C02CH3) ; SM : M+ 332 (43%, C21H3203), 300 (17), 273 (40), 272 (100), 252 (22), 164 (22), 129 (23), 109 (28), 107 (25), 101 (21), 95 (18), 81 (27) ; RMN¹H (90 MHz, 6) : 0.92 (3H,s), 1.09 (3H,s), 1.20 (3H,s), 3.61 (-C02CH3, 4.77-5.01 (-CH=CH2), 5.61-5.93 (-CH=CH2); RMN¹3C : 6 ppm (atome de carbone) : 13.9 (C-20), 16.2 (C-19), 17.9 (C-2), 20.7 (C-11), 21.8 (C-17), 35.7 (C-10), 36.3 (C-12, C-13), C-14), 36.8 (C-3), 37.7 (C-1), 41.1 (C-6), 45.3 (C-8), 47.3 (C-4), 48.7 (C-5), 52.2 (C-21), 55.7 (C-9), 109.5 (C-16), 150.3 (C-15), 177.9 (C-18), 210.8 (C-7).

(Trouvé : C, 76.04 ; H, 9.58 ; $C_{21}H_{32}O_3$ calculé : C, 75.90 ; H, 9.64).

- 1'hydroxy-7 ß epi-13 rosadiene-5(10), 15 oate de méthyle 5 (55 mg); IR (v cm⁻¹): 3570 (OH), 1720 (CO₂CH₃), SM : M+ 332 (46%; C₂H₃₂O₃), 314 (11), 299 (12), 273 (65), 255 (100), 239 (39); RMN¹H (90 MHz, 6): 1.01 (s, 3H), 1.13 (s, 3H), 1.29 (s, 3H), 3.64 (-CO₂CH₃), 3.68 (m, $W_{\frac{1}{2}}$ = 8Hz, H-7), 4.84-5.07 (-CH=CH₂), 5.61-5.92 (-CH=CH₂); RMN¹3C δ ppm (atome de carbone) : 19.2 (C-2), 19.7 (C-20), 23.1 (C-19), 24.2 (C-1), 31.5 (C-17), 32.9 (C-12), 34.0 (C-11), 35.0 (C-3), 35.6 (C-6), 36.7 (C-9), 37.3 (C-13), 38.2 (C-14), 41.4 (C-8), 47.2 (C-4), 51.8 (C-21), 70.8 (C-7), 112.2 (C-16), 125.1 (C-5), 139.1 (C-10), 146.9 (C-15), 178.4 (C-18). (Trouvé : C, 75.84; H, 9.72; C₂H₃₂O₃ calculé : C, 75.90; H, 9.64).

- l'hydroxy-7 ß isopimaradiene-9(11), 15 oate de méthyle 6 (241 mg); IR (v cm⁻¹): 3550 (0H), 1720 (C0₂CH₃); SM : M+ 332 (22%, C₂H₃₂O₃), 314 (49), 299 (24), 273 (20), 255 (54), 239 (52), 96 (100), RMN¹H (90 MHz, δ) : 0.87 (s, 3H), 1.03 (s, 3H), 1.14 (s, 3H), 3.59 (-C0₂CH₃), 3.78 (m, W $\frac{1}{2}$ = 6 Hz, H-7), 5.43 (m, W $\frac{1}{2}$ = 11 Hz, H-11), 4.76-4.99 (-CH=CH₂), 5.64-5.94 (-CH=CH₂) RMN¹3C δ ppm (atome de carbone) : 16.7 (C-19), 18.3 (C-2), 20.9 (C-20), 21.7 (C-17), 32.7 (C-6), 34.9 (C-13), 36.4 (C-1, C-12), 36.8 (C-3, C-14), 37.1 (C-8), 38.7 (C-10), 40.3 (C-5), 47.4 (C-4), 52.0 (C-21), 70.2 (C-7), 109.7 (C-15), 117.2 (C-11), 145.2 (C-9), 150.0 (C-16), 178.8 (C-18). (Trouvé : C, 75.95 ; H, 9.62 ; C₂H₃2O₃ calculé : C, 75.90 ; H, 9.64).

ACETYLATION DE L'HYDROXY-OLEFINE 6 :

300 mg de l'hydroxy-oléfine 6 sont dissous dans 10 ml de pyridine à 0°C. On ajoute 5 ml d'anhydride acétique et le mélange est agité une nuit à température ambiante. L'hydrolyse est réalisée par addition d'acide chlorhydrique dilué à 10%. Après extraction à l'éther, neutralisation, séchage et élimination du solvant et purification sur alumine avec le mélange éther de pétrole - éther (9/1) on obtient **l'acétate 7** (325 mg); RMN¹H (90 MHz, 6) : 1.09 (s, 3H), 1.11 (s, 3H), 1.18 (s, 3H), 2.04 (s, COCH3), 3.60 (-CO2CH3), 4.98 (m, H -7), 5.47 (m, W $\frac{1}{2}$ = 10Hz, H-11), 4.82-5.04 (-CH=CH2), 5.67-5.93 (-CH=CH2); RMN¹3C 6 ppm (atome de carbone) : 16.6 (C-19), 18.3 (C-2), 21.2 (C-20,CH3CO), 21.8 (C-17), 29.3 (C-6), 34.8 (C-13), 35.0 (C-14), 36.2 (C-1, C-12), 36.8 (C-3), 37.1 (C-8), 38.5 (C-10), 40.5 (C-5), 47.3 (C-4), 51.8 (C-21), 73.5 (C-7), 109.7 (C-15), 116.1 (C-11), 145.2 (C-9), 149.8 (C-16), 170.9 (CH₃-CO) 178.6 (C-18).

A basse température

696 mg de l'époxy-7,8 ß isopimarate 1 en solution dans 35 ml de toluène anhydre sont traités par 0,34 ml d'éthérate de trifluorure de bore à -50°C. Après traitement usuel et avant purification sur colonne d'alumine, nous isolons la cétone 8 (660 mg); IR (v cm⁻¹): 1700 (C=O), 1720 (C0₂CH₃); RMN ¹H (6 ppm); 0.83 (s, 3H), 1.07 (s, 6H), 3.48 (C0₂CH₃), 4.72-4.92 (-CH=CH₂), 5.46-5.77 (-CH=CH₂).

 $\overline{660}$ mg de la cétone $\underline{8}$ sont ensuite chromatographiés sur colonne d'alumine ; nous obtenons en éluant avec éther de pétrole - éther (9/1) **la cétone** $\underline{4}$ (598 mg).

ISOMERISATION DE L'EPOXY-7,8 a ISOPIMARATE DE METHYLE 2

La synthèse et les caractéristiques physicochimiques de l'époxy-7,8 a isopimarate de méthyle 2 sont décrites dans un travail antérieur¹.

A température ordinaire

A 1,99 g d'époxyde-7,8 a isopimarate en solution dans 100 ml de benzène anhydre, sont ajoutés 0,99 ml d'éthérate de trifluorure de bore. Après agitation durant 15 mn et traitement habituel, le mélange réactionnel est chromatographié. Le mélange éther de pétrole - éther (95/5) permet d'isoler :

> - l'isopimaratriène-7,9 (11), 15 cate de méthyle 3 (444 mg)

- l'éther-oxyde cyclique 9 (142 mg) IR (ν cm⁻¹) : 1720 (C=0) ; SM : M+ 332 (58% C_{21H3203}), 317 (100), 299 (30), 288 (24), 273 (75), 257 (86), 239 (33), 229 (47), 147 (37), 121 (44), RMN¹H (δ ppm) : 0.70 (s, 3H), 1.02 (s, 3H), 1.13 (s, 3H), 3.53 (s, H-7), 3.58 (-C0₂CH₃) ; RMN¹3C : δ ppm (atome de carbone) : 14.7 (C-20), 16.7 (C-19), 28.4 (C-17), 80.3 (C-13), 85.9 (C-7), 178.7 (C-18).

 (Trouvé : C, 75.78; H, 9.56; C₂₁H₃₂O₃ calculé : C, 75.90; H, 9.64). Le mélange benzène - éther (5/1) élue la cétone 4 (728 mg) et l'hydroxy-7 a épi-13 rosadiène-5 (10), 15 oate de méthyle 10 (728 mg). IR (v cm⁻¹) : 3400 (0H), 1720 (C=0); SM : M+ 332 (1%, C₂₁H₃₂O₃), 314 (23), 299 (15), 255 (100), 239 (61), 105 (39); RMN¹H (6 ppm) : 0.90 (s, 3H), 1.00 (s, 3H), 1.28 (s, 3H), 3.60 (m, H-7), 3.65 ($-C0_2CH_3$), 4.67-5.06 ($-CH=CH_2$), 5.58-5.91 ($-CH=CH_2$); RMN ¹3C & ppm (atome de carbone) : 18.3 (C-20), 19.1 (C-2), 23.1 (C-19), 24.3 (C-1), 31.6 (C-17), 32.1 (C-11), 32.6 (C-12), 34.6 (C-3, C-14), 36.6 (C-6, C-13), 39.0 (C-9),45.0 (C-8), 47.0 (C-4), 51.9 (C-21), 67.6 (C-7), 112.2 (C-16), 126.5 (C-5), 139.0 (C-10), 146.8 (C-15), 178.1 (C-18). (Trouvé : C, 75.81 ; H, 9.69 ; C21H_32O3) calculé : C, 75.90 ; H, 9.64).

A basse température

1,53g d'époxy-7,8 ª isopimarate de méthyle **2** en solution dans 76 ml de toluène anhydre sont agités pendant 15 mn à -50°C avec 0,76 ml d'éthérate de trifluorure de bore. Après traitement habituel du mélange réactionnel, on obtient un résidu huileux qui est fractionné par chromatographie en phase liquide.

Chromatographie en phase liquide. L'élution avec éther de pétrole - éther (95/5) conduit **au triène 3** (52 mg). Avec le mélange éther de pétrole - éther (9/1), on isole l'aldéhyde 12 (241 mg) F = 112°C (éthanol) ; IR (v cm⁻¹) : 2650 (CH), 1720 (C0₂CH₃) 1700 (C=0) ; SM : M⁺ 332 (6% C₂H₃₂O₃), 273 (43), 271 (91), 257 (64), 243 (45) ; RMN¹H (90 MHz, ⁶) : 0.87 (s, 3H), 0.93 (s, 3H), 1.10 (s, 3H), 3.52 (C0₂CH₃) 4.71-4.92 (-CH=CH₂), 5.44-5.75 (-CH=CH₂), 9.30 (s, CHO) ; RMN¹³C δ ppm (atome de carbone), 16.8 (C-20), 17.3 (C-19), 30.5 (C-17), 53.7 (C=8), 112.7 (C-16), 146.2 (C-15), 178.2 (C-18), 204.1 (C-7). (Trouvé : C, 75.47 ; H, 9.50 ; C₂₁H₃₂O₃ calculé : C, 75.90 ; H, 9.64).

L'élution avec benzène-éther (9/1) permet d'isoler l'éther-oxyde 9 (107mg) et le céto-7 isopimarène-15 oate de méthyle 4 (295mg). Avec l'éther comme éluant nous obtenons enfin un mélange (443mg) des hydroxy-oléfines 10 et 11 (65/35).

REACTION DE L'ALDEHYDE 12 AVEC L'ETHERATE DE TRIFLUORURE DE BORE

451 mg de l'aldéhyde 12 en solution dans 45 ml de benzène sont traités pendant 15 mn à température ordinaire par 0,22 ml d'éthérate de trifluorure de bore. Après traitement usuel du mélange réactionnel on obtient après purification par chromatographie sur colonne l'éther-oxyde **9** (435 mg).

REMERCIEMENTS

Nous remercions Messieurs M. PETRAUD et B. BARBE pour les spectres de RMN¹H et de RMN¹³C ainsi que Monsieur G. BOURGEOIS pour les spectres de masse (Centre d'Etudes Structurales et d'Analyses des Molécules Organiques, Université de Bordeaux I).

REFERENCES

- 1. B. PAPILLAUD, F. TIFFON, M. TARAN, B. ARREGUY-SAN MIGUEL et B. DELMOND, Tetrahedron, 41, 1845 (1985).

- M. TARAN et B. DELMOND, Tetrahedron, <u>41</u>, 1859 (1985).
 B. DELMOND, M. TARAN et J. VALADE, Tetrahedron Letters, 1339 (1980).
 S.H. GROVER et J.B. STOTHERS, Canad.J.Chem., <u>52</u>, 870 (1974).
 H. EGGERT, G.L. VAN ANTWERP, N.S. BHACCA et C. DJERASSI, J.Org.Chem., <u>41</u>, 71 (1976).
- M. TARAN, B. DELMOND, M. PETRAUD et B. BARBE, résultats en cours de publication.
 B. DELMOND, M. TARAN, J. VALADE, M. PETRAUD, B. BARBE, Org.Magnetic Resonance, <u>17</u>, 207 (1981) et références citées.
- S.H. GROVER, J.P. GUTHRIE, J.B. STOTHERS, C.T. TAN, J.Magnetic Resonance, 10, 227 (1973).
 H.J.REICH, M.JAUTELAT, M.T.MESSE, F.J.WEIGGERT, D.J.ROBERTS, J.Am.Chem.Soc., 91,7445(1969).
- 10. F.H.WEHRLI, T.WIRTHLIN, Interpretation of Carbon-13 NMR Spectra, Heyden, London, (1976) p.154.
- 11. G.PRECIGOUX, F.LEROY, B.DELMOND, M.TARAN, J.VALADE, Acta Cryst., <u>B37</u>, 468 (1981).
- 12. D.N. KIRK et M.P. HARTSHORN, "SteroId Reaction Mechanisms", Elsevier, Amsterdam, (1968),353. 13. I.G. GUEST et B.A. MARPLES, J.Chem.Soc.(c), 1626 (1970).
- 14. J.W. BLUNT, M.P. HARTSHORN et D.N. KIRK, J.Chem.Soc.(c), 635 (1968).
- 15. J.W. BLUNT, M.P. HARTSHORN et D.N. KIRK, Tetrahedron, 25, 149 (1969).